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Nanotechnikum Weinberg

hsl B 2008

In operation since 2007, 1800 m2 labs, 210 m2 cleanroom class 100

Central labs (IZM@MLU): Nanostructuring/-analytics, electron 
microscopy, lithography, positron annihilation, deposition

Reseach disposal areas (Bio–Nano-Zentrum) for physics, chemistry, 
material science, bioscience
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hsl B 2008

Topics

Nanostructuring/-analysis 
(patterning, characterization of thermoelectric and 
photovoltaic materials, defect investigations in semiconductors)

Nanolithography 
(nanosphere lithography, nanoimprint, EBL) 

Positron annihilation 
(crystal defects, porosimetry, EPOS project)

High resolution materials characterization 
(FESEM, STEM, EFTEM, AFM, Raman microscopy, 
cathodoluminescence microscopy)
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Analytics on Si for 3rd generation photovoltaics
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Superlattice with 2 nm Si/3 nm SiOx 
after RTA (1100 °C, 30 s)

EELS in different layers
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[Schade et al. 2008]
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Nanosphere lithography

hsl B 2008
FESEM100 nm

Silicon nanowires 
by catalytic etching

[Geyer et al. 2008]

TEMDevelopment of a “nano pinhole camera”

100 nm
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Defects at IZM@MLU

Defects in semiconductors 
(interaction of point defects with dislocations, dislocation 
dynamics – TEM, SEM, positron annihilation)

Gliding dislocations in GaAs, 
cathodoluminescence microscopy

[Schreiber et al.]

hsl B 2008
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Defect interaction: Key issues
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Dislocations and point defects are not independent 
from each other.

The motion of dislocations leads to the generation 
of intrinsic defects.

The existing point defect population is altered 
by the presence of dislocations.

Formation of intrinsic defects during plastic deformation 
of elemental and compound semiconductors
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Positron annihilation
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Positrons may be captured during diffusion in lattice defects.

Annihilation rate (reciprocal lifetime) depends on the local electron 
concentration at the annihilation site.

Positron lifetime: kind of defect, trapping rate: defect density
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Trapping model
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Quantitative analysis of positron 
trapping by a set of rate equations

Solution (lifetime spectrum):

Intensity Ii relates to the trapping 
rate:

Trapping

Defect

Positron source

Thermalization

Annihilationλb

Defect-free bulk

Annihilation radiation

λd

κd

∑
i

Ii

τi
exp

(
− t

τi

)

τ1 = 1/(λd +κd) τ2 = 1/λd

κd = µρd
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Positron capture in defects
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τ ∝ open volume τ ≈ τb

V+

r r r

Coulomb potential Coulomb potential

Positron potential V+(r) of a neutral and a negatively charged vacancy. The 
potential of a negatively charged acceptor acting as a shallow positron trap 
is shown on the right. The trapping rate κ = κ(T) is constant for neutral 
defects and a function of temperature T for charged defects.
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Point defect densities after plastic deformation
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Total density of vacancies and antisite 
defects as a function of the strain. Result 
of measurements by positron annihilation in 
plastically deformed GaAs. Uniaxial 
compression in [110] direction at 773 K, 
strain rate 1×10−3 s−1.
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Deformation conditions
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Total number of vacancies in the 
bulk    , vacancies bound to 
dislocations    , as well as number of 
GaAs antisites     in plastically 
deformed GaAs. 
Deformation temperature 773 K, strain 
3 %, strain rate 7.5×10–5 s–1 (above),  
3×10–4 s–1 (below).
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→ Defect densities higher for  
multislip orientation
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Positron lifetimes in GaAs
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Lifetime components:

 τ2 = τd3 = (260 ± 5) ps
 corresponds to a defect with the open volume of a monovacancy
 τ3 = τd2 = (477 ± 20) ps
 corresponds to a defect with a large open volume 
 (vacancy cluster)
 At low sample temperatures, another positron trap without open  
 volume becomes active (antisite defects).
 τd1 ≈ τb
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Dissociated dislocation
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Dissociation of a perfect 60° dislocation in the glide set in a 30° and a 90° 
partial dislocation. There is an intrinsic stacking fault between the two 
partials. The drawing is along the (110) plane.
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Vacancy incorporation
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Incorporation of a vacancy in the 
core of a 30° partial dislocation 
as a local transition from glide to 
shuffle set. 
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Dislocation as a positron trap
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Positron potential V+(x,y) of a dislocation. The regular dislocation line is 
a shallow positron trap, while a bound vacancy acts as a deep trap.
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Calculation of vacancy clusters
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Energy gained by adding a 
monovacancy to an aggregate of 
n – 1 vacancies in Si (upper 
part) and the corresponding 
positron lifetime (lower part).

[Staab et al. 1999]
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Magic numbers
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Especially stable structures (n < 18): !V12 in GaAs 
! !                                  V6, V10, V14 in Si

Vacancy chains are not energetically favored structures

The experimentally observed long-lived positron lifetime 
component may be attributed to V12 in GaAs and to V14 
or V18 in Si.

Magic numbers in silicon 
n = 4i + 2, i = 1, 2, 3, …
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Cutting of dislocations
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Cutting of edge dislocations

b1
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Formation of vacancy clusters

hsl B 2008

Agglomeration of vacancies as a result of jog dragging 
at screw dislocations
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Vacancy cluster

C =
1
V

ξ1 · u× ξ2

|ξ1 · u× ξ2|b1 · u× b2

Number of vacancies
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Superjogs
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Formation of edge dipoles and prismatic dislocation loops
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Dipole structure
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Dislocation dipole in deformed Si. A1–A2 and B1–B2 are the two dissociated edge 
dislocations with their Shockley partial dislocations. The dissociation width amounts 
to 6 nm. HRTEM image of a (110) foil.
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Vacancies and intersititals
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Secondary reactions lead to the formation of antisites: 

b

Vacancies Interstitials

IGa + VAs → GaAs  IAs + VGa → AsGa
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Summary
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" The formation of point defects during plastic 
deformation of semiconductors can be related to 
dislocation motion.

" The basic mechanism is the emission of vacancies and 
interstitials by screw dislocations containing jogs.

" The formation of long rows of vacancies is 
energetically unfavorable.

 !Stable three-dimensional vacancy agglomerates are 
formed in a primary process by atomic re-arrangement 
directly at the climbing jog.
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