Interdisziplinäres Zentrum für Materialwissenschaften
  Publikationen [suche]   
Organisation
Aktivitäten
Kontakt
Angebote für Studenten
Bereiche im
      Nanotechnikum
Martin-Luther-Universität
Interdisziplinäres Zentrum für Materialwissenschaften
Nanotechnikum Weinberg
Heinrich-Damerow-Str. 4,
D-06120 Halle, Germany
Tel.: +49 345 55 28471
Telefax:+49 345 55 27390 email: info@cmat.uni-halle.de
[Veröffentlichungen] [Graduierungsarbeiten] [Berichte] [Poster]
Abstracts

Akira Uedono, Silvia Armini, Y Zhang, Takeaki Kakizaki, Reinhard Krause-Rehberg, Wolfgang Anwand, Andreas Wagner
Surface sealing using self-assembled monolayers and its effect on metal diffusion in porous low-k dielectrics studied using monoenergetic positron beams
Applied Surface Science 368 (2016), 272-276

Surface sealing effects on the diffusion of metal atoms in porous organosilicate glass (OSG) films were studied by monoenergetic positron beams. For a Cu(5 nm)/MnN(3 nm)/OSG(130 nm) sample fabricated with pore stuffing, C4F8 plasma etch, unstuffing, and a self-assembled monolayer (SAM) sealing process, it was found that pores with cubic pore side lengths of 1.1 and 3.1 nm coexisted in the OSG film. For the sample without the SAM sealing process, metal (Cu and Mn) atoms diffused from the top Cu/MnN layer into the OSG film and were trapped by the pores. As a result, almost all pore interiors were covered with those metals. For the sample damaged by an Ar/C4F8 plasma etch treatment before the SAM sealing process, SAMs diffused into the OSG film, and they were preferentially trapped by larger pores. The cubic pore side length in these pores containing self-assembled molecules was estimated to be 0.7 nm. Through this work, we have demonstrated that monoenergetic positron beams are a powerful tool for characterizing capped porous films and the trapping of atoms and molecules by pores.

Keywords: Low-k Pore Self-assembled monolayer Positron annihilation

DOI10.1016/j.apsusc.2016.01.267


Impressum Copyright © Center of Materials Science, Halle, Germany. All rights reserved.